
A Machine Learning Approach for
Personalized Job Recommendation
System
Harini Priya B R, Kannimalar K, Saranya S B, Subbulakshmi
B
Thiagarajar College of Engineering, Madurai, Tamil Nadu, India
Corresponding author: Harini Priya B R, Email: harinipriya@student.tce.edu

Every year lakhs and lakhs of students are graduating. The students from top col-
leges find a suitable job with fewer struggles since most of the companies visits
their college for recruitment. But this is not the same case for all colleges. So these
students go in search of search engines to find a suitable job. This is not an easy task.
Thus a recommendation engine that would recommend jobs based on their search
history is built. Currently, more websites give plenty of information about job op-
portunities that may not intersect. The goal is to ease the work of job searchers
by providing them with personalized job recommendations from various websites.
This approach tries to overcome the drawbacks of existing papers such as cold start
problems, security issues and scalability thus providing a better recommendation
system. Thus the recommender system can play a significant role to help college
graduates and job seekers to fulfill their dreams by recommending a job based on
their interests.

Keywords: Recommendation engine, Machine Learning, Hybrid recommendation.

2021. In Rahul Srivastava & Aditya Kumar Singh Pundir (eds.), New Frontiers
in Communication and Intelligent Systems, 399–404. Computing & Intelligent
Systems, SCRS, India. https://doi.org/10.52458/978-81-95502-00-4-42

1 Introduction

India has the biggest and fastest-growing number of skilled individuals with invents of internet,

opportunities are unlimited. In such an environment, the only thing stopping individuals from getting

an opportunity of their choice is spending most of their time searching for the right job rather than

getting skilled and also in case of working people who want to switch to another job, they don’t have

ample amount of time to pick a perfect job. There are plenty of websites that provide loads of

information about job opportunities. But this task is extremely tedious for fresher’s or job seekers as

they need to go through many websites to find the perfect job. The recommender systems are more

common nowadays. But the type of recommendations provided may be different based on the domain

of its use. In the case of the job recommendation system, personalized job recommendations are more

suitable. To help job seekers find their perfect workplace, a recommendation system that recommends

jobs to users based on their previous searches is designed. There are many job search websites which

list jobs posted by recruiters. There are many job search websites like Indeed, Internshala, LinkedIn,

etc. One can use these websites and search for jobs and apply through the link provided. These websites

demand educational background and personal information. They also have various filter options using

which one can minimize the time of search. Even Though it has some good advantages it is not suitable

in every situation. But this has some disadvantages such as the recruiters may not post all available job

searching websites. So one may miss a great opportunity and it’s also a time-consuming process to look

into all available websites, giving all the details in various websites is dangerous. Nowadays data leaks

happen so commonly. Various papers have been proposed based on the job recommendation system. In

paper [1], a recommendation system is provided in which jobs are scraped from websites and then job

offers with common attributes are clustered. If a user likes a job that belongs to one cluster, then the

jobs that were in the same cluster were recommended and also based on the user’s interaction such as

liking, applying and so on. The drawback is one can't decide the recommendation based on the user's

likes as the interest of the user varies from time to time. In paper [2], they proposed a recommendation

system in which job aspirants subscribe to mail alerts for new job postings that will match their job

interests. Here recommendation job list is found based on the observations of user click behaviour,

with that developed the set of features that reflect the click behavior of individual job aspirants and

then it was clustered based on the users. The drawback here is the grey sheep problem which means

that there are always some people whose taste doesn't match with anyone. In paper [3], they have

provided the analysis of existing different job recommender systems and their techniques and also

pointed out the drawbacks in each recommender system such as cold start problem, security issues,

and scalability and so on. In paper [4], a hybrid recommendation system is proposed in which data is

scraped using a web crawler and applied a collaborative filtering recommendation algorithm and

content-based recommendation algorithm. The drawback here is that web scraping has a much more

focused approach and purpose while web crawlers will scan and extract all data on a website. In paper

[5] the user’s skill set is collected in a specific format. Then a data mining approach is followed to

match the user's skills with company requirements. Based on job requirements a test is conducted to

judge them. This approach gives only a restricted recommendation to the user and thereby

demotivating them. Paper [6] approaches a content-based algorithm to rank top candidates using

cosine similarity and KNN algorithm.

2 Proposed Approach

The architecture of the proposed system is depicted in Figure 1. It has four layers namely input layer,

database layer, recommendation layer and UI layer. The input layer extracts all necessary information

like user details and job openings from various websites using a web scraper. The second layer, the

Harini Priya B R, Kannimalar K, Saranya S B, Subbulakshmi B

400

database layer stores all the recovered data in a safe and easily recoverable container. With all this

information a recommendation engine is created at the recommendation layer which generates top

recommendations. The UI layer is a customer point of view that has four screens to list

recommendations, to search for suitable jobs, to view the detailed description of a job and to list search

history.

The overall workflow of the algorithm is mentioned in Figure 2 and the explanation is mentioned

below.

(i) The user’s location and preferred domain are collected. Various job details are scrapped from

different websites.

(ii) If user history is present for the respective user, jobs that are similar to the history are

recommended.

(iii) If there is no user history, popular jobs are recommended in the ascending order of the

distance between the location of the job and the user.

(iv) If there is a new job available,

a. If it belongs to a cluster that already has jobs that were recommended to that user, then

the new job is added to the recommendation list.

b. If not, it is not added to the recommendation list.

In this approach, there is no security issue since only user history is known about a user. None of the

personal information is got from the user. To solve the scalability problem the outdated jobs are

removed and user information of inactive users is moved to another database. If the user becomes

active again their info can be retrieved from another database. If a new user comes (cold start

problem), then top-seen jobs are sorted based on the distance between the location of the job and the

user location.

2.1 Implementation

The language used is Python. Python is a interpreted programming language. Python is a language that

is often used to build websites and software, automate tasks, and conduct data analysis.

Extracting job details

Job details are extracted from various websites like Amcat, Indeed, Internshala, LinkedIn, etc. Web

Scraping is a process of extracting information from websites and online content. It is a free method to

extract information and receive datasets. With this dataset further analysis is made. Packages used are

Beautiful soup and Requests. Beautiful Soup parses HTML into machine-readable tree format to

extract DOM Elements quickly. It allows extraction of a certain paragraph and table elements with a

certain HTML ID or Class. Requests would get the HTML element from the URL this will be the input

for BS to parse.

Preprocessing extracted job details

Natural Language Processing or NLP is a field of AI that gives machines the ability to read, understand

and derive meaning from human languages. All basic preprocessing steps like removing stopwords,

lemmatization, converting all texts to lowercase, etc., were done. The package used is NLTK. NLTK, or

Natural Language Toolkit, is a Python package that you can use for NLP. Before analyzing the data it

must be preprocessed for better results.

New Frontiers in Communication and Intelligent Systems

401

Fig. 1. Architecture Diagram

Fig. 2. Workflow of Recommendation System

Recommendation engine

Hybrid content-based recommendation: It finds similarities between job details and user history

using the doc2vec model. Doc2vec is an NLP tool for representing documents as a vector.Doc2vec is a

very nice technique. It’s easy to use, gives good results, and as you can understand from its name, is

heavily based on word2vec. The package used is Gensim.

Gensim is a python library for topic modeling, document indexing and similarity retrieval with large

corpora. It mainly focuses on the natural language processing (NLP) and information retrieval (IR)

community. The significant features of Gensim include that all algorithms are memory independent

concerning the corpus size i.e., can process input larger than RAM, streamed, out-of-core, easy to plug

in its own input corpus/datastream and easy to extend with other Vector Space algorithms ie., Intuitive

interfaces and distributed computing.

Clustering: It clusters similar jobs using the DBSCAN algorithm. DBSCAN is a well-known data

clustering algorithm that is commonly used in machine learning. DBSCAN groups together data that

are close to each other based on usually Euclidean distance and a minimum number of points. It also

marks as outliers the points that are in low-density regions which is a great advantage. The package

used is Sklearn. Scikit-learn is a machine learning library for the Python. It features various

classification, regression and clustering algorithms.

Harini Priya B R, Kannimalar K, Saranya S B, Subbulakshmi B

402

3 Results

Displayed various job details were scraped from different websites and a user history dataset was

created. A dataset with test user history is created. The dataset has features like Jobid, jobTitle and job

description. The user history has features like Userid and Jobid. The test dataset has features such as

Userid and Jobid.

For testing purposes, the user history of a random user was used. The user has viewed jobs related to

software development. The recommendation generated by the algorithm was pretty good. Precision and

recall at cutoff k is calculated. The k chosen was 5. Precision and Recall at cutoff k, P@k, and r@k, are

simply the precision and recall calculated by considering only the subset of the recommendations from

rank 1 to k. Figure 3 is a graphical representation of Precision@k vs Recall@k of the selected random

user. From this graph, it can be inferred that considering the top 5 recommendations gives good

precision and recall score. The metric used here to determine the performance of the recommendation

system is the Mean Average Precision. It is the mean of average precision of all the users. Average

Precision rewards you for giving correct recommendations. If there is a need to recommend N items

and there are m relevant items in the full space of items, Average Precision AP@N is defined as(1). AP

applies to a single user. Mean Average Precision MAP@N just goes a step further and averages the AP

across all users. MAP@N is defined as (2). The Mean Average Precision for the recommender system is

nearly 88%.

 𝐴𝐴@𝐴 = (1/

𝐴) ∑𝐴
𝐴=1 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴@𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) (1)

𝐴𝐴𝐴@𝐴 = (1/|𝐴|) ∑|𝐴|
𝐴=1 (𝐴𝐴@𝐴)𝐴 (1)

Fig. 3. Sample user’s Precision vs Recall graph

4 Discussion

Nowadays it's difficult for fresher’s and job seekers to search for a perfect job on many random

websites. This type of searching leads to a wastage of time and is difficult to proceed with one’s career.

To overcome such difficulties, personalized recommendations are given. To achieve this intention,

information about the jobs is extracted from various websites and these jobs are recommended based

New Frontiers in Communication and Intelligent Systems

403

on the job location, user location, user history and their respective job description. Thus providing

personalized job recommendations. In the future, this project can be expanded by tie-up with

companies to post their jobs in an application and extending the application by recommending courses

for the user’s career path development.

References

[1] Mhamdi, D. et al. (2020). Job Recommendation based on Job Profile Clustering and Job Seeker Behavior.

Procedia Computer Science, 175: 695–699.

[2] Jiang, M. et al. (2019). User clicks prediction for personalized job recommendation. World Wide Web, 22:

325–345.

[3] Mishra, R. and Rathi, S. (2020). Efficient and Scalable Job Recommender System Using Collaborative

Filtering. In ICDSMLA, 842–856.

[4] Dong, Z. et al. (2020). Employment Service System Based on Hybrid Recommendation Algorithm. Springer,

1:368–375.

[5] Tayade, T. et al. (2020). Data Mining Approach to Job Recommendation Systems. In International

Conference on Mobile Computing and Sustainable Informatics, 1: 503–509.

[6] Roy, P. K., Chowdhary, S. S. and Bhatia, R. (2020). A Machine Learning approach for automation of Resume

Recommendation systems. Procedia Computer Science, 167: 2318–2327.

Harini Priya B R, Kannimalar K, Saranya S B, Subbulakshmi B

404

