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Perishable items are typically fresh food that has a relatively short lifetime. To
increase the lifetime of perishable items preservation techniques are prone. Sup-
pliers consider a two-level partial trade credit model to sell the goods before it
deteriorates to minimize the revenue loss. The two-level trade credits are a) Sup-
plier proposes that the retailer pay a portion of the order in cash when it is deliv-
ered, and then offers a short-term interest-free loan for the balance and b) Retailers
offer partial delay in payment to their customers. The present research article in-
vestigates the analysis of the EOQ inventory model on the perishable items with
a price-dependent demand under upstream and downstream partial trade credit.
Economic Order Quantity is calculated for the propound inventory model using
the given parameters.
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1 Introduction

In the current scenario, trade credit plays a vital role in the inventory model to
increase the demand which reduces the selling price of the product. Trade credit
means ‘delay in payment’ or ‘Buy now and pay later’. The suppliers provide a
trade credit period to the retailers, where retailers can pay the sumwithout inter-
est during that period. Goyal [1] first proposed an inventory control model under
delay in the period, where Goyal [1] assumed that manufacturers provide a trade
credit period to vendors, but vendors do not provide credit periods to customers.
From this point of view, many researchers developed an inventory model with
different scenarios. S Das et al. [2] developed a partial trade credit inventory
model with reliability to solve nonlinear optimal production problems through
the Taylors series approximation method. S Sahu et al. [3] proposed trade credit
model for deteriorating items in which preservation technology helps in the op-
timization the total profit. LY Ouyard et al. [4] analyzed a production inventory
model with an arithmetic-geometric mean inequality approach to finding the
optimal production policy. LEC Barron et al. [5] developed an EOQ inventory
model with nonlinear stock-dependent demand under trade credit, which deter-
mines the optimal order quantity and ending inventory level to maximize the
retailer’s total profit.
On the inventory model, Huang et al. [6] established a two-level credit period, in
which suppliers provide a credit period to retailers in exchange for retailers pro-
viding a credit period to customers. Initially Huang [6] consider that retailer’s
credit period is less than the supplier’s credit period. Later developed on vari-
ous trade credit on different circumstances. Suppliers and retailers offer various
trade credits to the retailers and customers like partial and complete trade credit.
S Chen et al. [7] proposed an inventory model for time-varying deteriorating
items that are solved using discount cash flow analysis based on two-level trade
credit.
Perishable items like fruits, vegetables and meats get deteriorated after a period
of time. To minimize the deterioration rate, various preservation techniques are
adapted. Hsu et al. [8] introduced perishable techniques on the perishable in-
ventory model. Later Huang analyzed an inventory model under two-level trade
credit and preservation Techniques. S Das et al. [9]; Dye et al. [10]; U Mishra
et al. [11] and AA Shaikh et al. [12] developed various inventory models under
preservation technique. Under preservation techniques and trade credit, Sahu et
al.[3] offered a complete backlog inventory model to maximize the total profit.
Rahman et al.[13] developed a preservation strategy for deteriorating item with
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hybrid price and stock-dependent demand under advance payment.
The structure of the paper is observed as: In section 2, assumption and notation
are briefly explored. The inventory model with two-level trade credit is math-
ematically formulated in Section 3. Section 4 describes the theoretical proof to
find the optimal solution of the inventory model. Section 5 concludes with future
scope.

2 Assumptions

The following assumptions would be used to develop this model:

1. The demand 𝐷(𝑝) = 𝑎−𝑏𝑝 is a function of price-dependent demand where
a denotes the demand scale and b denotes the price-sensitive parameters.
D and D(p) are the same in this model.

2. Instantaneous replenishment

3. Lead time is zero

4. No shortage

5. Suppliers offer retailers upstream partial trade credit of R so that they can
pay a partial sum of 𝜁 when placing an order and settle the remaining cost
within the credit period.

6. Retailers offer customers downstream partial trade credit of C so that they
can pay a portion of the cost 𝜂when placing an order and settle the balance
within the credit period.

3 Mathematical Formulations

The differential equation that reflects the instantaneous condition of inventory
through time is (0, 𝑇 )

𝑑𝐼 (𝑡)
𝑑𝑡 + 𝜗𝐼 (𝑡) = −𝐷, 0 ≤ 𝑡 ≤ 𝑇 (39.1)

Initial Inventory at t=0, 𝐼 (𝑡) = 𝐼0, 𝐼 (𝑡) = 𝐼0𝑒−𝜗𝑡 + 𝐷
𝜗 [𝑒

−𝜗𝑡 − 1]
At 𝑡 = 𝑇 , 𝐼 (𝑇 ) = 0, we get

𝐼0 = 𝑄 = 𝐷
𝜗 [𝑒−𝜗𝑇 − 1], 0 ≤ 𝑡 ≤ 𝑇 (39.2)
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Sub in equation (2) we get,

𝐼 (𝑡) = 𝐷
𝜗 [𝑒−𝜗(𝑇−𝑡) − 1], 0 ≤ 𝑡 ≤ 𝑇 (39.3)

Following costs are considered in defining a proposed inventory model. They are

1. Ordering cost is 𝐶𝑜

2. Sales revenue

𝐶𝑠𝑟 = 𝑝∫
𝑇

0
𝐷𝑑𝑡 = 𝑝𝐷𝑇 (39.4)

3. Holding cost

𝐶ℎ = 𝐻𝑐 ∫
𝑇

0
𝐼 (𝑡)𝑑𝑡 = 𝐻𝑐𝐷

𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] (39.5)

4. Deterioration cost

𝐶𝑑 = 𝑄 − 𝐷 = 𝐷
𝜗 [𝑒−𝜗𝑇 − 1] − 𝐷

= 𝐷[𝑒
−𝜗𝑇

𝜗 − 1
𝜗 − 1] (39.6)

5. Preservation cost = 𝜉 𝑇
6. Interest earned and Interest paid varies based on credit period C and R.

They are 𝐶 ≤ 𝑅 and 𝐶 ≥ 𝑅.
Case 1: 𝐶 ≤ 𝑅

Customer’s trade credit period offered by the manufacturer is less than manu-
facturers trade credit offered by the suppliers is again sub-classified as according
to R, C, 𝑇 + 𝐶 as 𝑅 ≤ 𝑇 , 𝑅 ≤ 𝑇 + 𝐶 and 𝑅 ≥ 𝑇 + 𝐶 .

Case 1.1: 𝐶 ≤ 𝑇

Retailers gain interest from two parts: Immediate payment(from 0 to R) and de-
layed payment(from C to R ) and Retailers have to finance all items sold after R
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in immediate payment and R-C‘ in delayed payment, they are

Interest earned =𝑠𝐼𝑒[
𝜁𝐷𝑅2

2 + (1 − 𝜁 )𝐷(𝑅 − 𝐶)2
2 ] (39.7)

Interest paid =𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + 𝜁𝐷(𝑇 − 𝑅)2
2

+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)2
2 ] (39.8)

Total Profit(TP) = 1
𝑇 [𝐶𝑠𝑟 + 𝐼𝐸 − [𝐶𝑜 + 𝐶ℎ + 𝐶𝑑 + 𝑃𝐶]] (39.9)

Figure 1: Instant payment and Delayed payment in 𝐶 ≤ 𝑅 and 𝑅 ≤ 𝑇

𝑇𝑃1.1(𝑇 ) =
1
𝑇 [𝑝𝐷𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑅2

2 + (1 − 𝜁 )𝐷(𝑅 − 𝐶)2
2 ]

− (𝐶𝑜 +
𝐻𝑐𝐷
2𝜗2 [𝑒𝜗(𝑇−2𝑇1)] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + 𝜁𝐷(𝑇 − 𝑅)2
2

+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)2
2 ])] (39.10)

Case 1.2: 𝑅 ≤ 𝑇 + 𝐶

Retailers gain interest from two parts: Immediate payment(from 0 to R) and de-
layed payment(from C to R) and Retailers have to finance all item sold after R in
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immediate payment and R-C in delayed payment, they are

Interest earned =𝑠𝐼𝑒[
𝜁𝐷𝑆2
2 + (1 − 𝜁 )𝐷(𝑅 − 𝐶)2

2 ] (39.11)

Interest paid =𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + 𝜁𝐷(𝑇 − 𝑅)2
2

+ (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶) + (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)2
2 ] (39.12)

Figure 2: Instant payment andDelayed payment in 𝐶 ≤ 𝑅 and 𝑅 ≤ 𝑇+𝐶

𝑇𝑃1.2(𝑇 ) =
1
𝑇 [𝑝𝐷𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑆2
2 + (1 − 𝜁 )𝐷(𝑅 − 𝐶)2

2 ]

− (𝐶𝑜 + 𝐷𝑝𝑇 + 𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1]

+ 𝜉 + 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + 𝜁𝐷(𝑇 − 𝑅)2
2

+ (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶) + (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)2
2 ]] (39.13)

Case 1.3: 𝑅 ≥ 𝑇 + 𝐶

Retailers gain interest from two parts: Immediate payment (from 0 to R) and
delayed payment (from C to R) and Retailers have to finance all item sold after R
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in immediate payment, they are

Interest earned =𝑠𝐼𝑒[
𝜁𝐷𝑇 2

2 + (1 − 𝜁 )𝐷𝑇 2

2
+ 𝜁𝐷𝑇 (𝑅 − 𝑇 ) + (1 − 𝜁 )𝐷𝑇 (𝑅 − 𝑇 − 𝐶)] (39.14)

Interest paid =𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 ] (39.15)

Figure 3: Instant payment and Delayed payment in 𝐶 ≤ 𝑅 and 𝑅 ≥ 𝑇+𝐶

𝑇𝑃1.3(𝑇 ) =
1
𝑇 [𝑝𝐷𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑇 2

2 + 𝜁𝐷𝑇 (𝑅 − 𝑇 ) + (1 − 𝜁 )𝐷𝑇 2

2
+ (1 − 𝜁 )𝐷𝑇 (𝑅 − 𝑇 − 𝐶)] − (𝐶𝑜 + 𝐷𝑝𝑇

+ 𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 ] (39.16)

Case 2: 𝐶 ≥ 𝑅

Customers trade credit period from manufacturer is greater than manufactur-
ers trade credit from the suppliers is sub-classified as 𝑅 ≤ 𝑇 and 𝑅 ≥ 𝑇

Case 2.1: 𝑅 ≤ 𝑇

Retailers gain interest from Immediate payment (i.e)from 0 to R and Retailers
have to finance the initial amount payment made by suppliers, all items sold
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after R in immediate payment and (R to 𝜏 T+C) in delayed payment, they are

Interest earned = 𝑠𝐼𝑒[
𝜁𝐷𝑇 2

2 ] (39.17)

Interest paid = 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇
2

2 + 𝑇 (𝐶 − 𝑅))] (39.18)

Figure 4: Instant payment and Delayed payment in 𝐶 ≥ 𝑅 and 𝑅 ≤ 𝑇

𝑇𝑃2.1(𝑇 ) =
1
𝑇 [𝑝𝐷𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑇 2

2 ] − (𝐶𝑜 + 𝐷𝑝𝑇

+ 𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1]

+ 𝜉 + 𝑠𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇
2

2 + 𝑇 (𝐶 − 𝑅))] (39.19)

Case 2.2: 𝑅 ≥ 𝑇

Retailers gain interest from Immediate payment (i.e)from 0 to R and Retailers
have to finance the initial amount payment made by suppliers, all items sold
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after R in immediate payment and (R to 𝑇+C) in delayed payment, they are

Interest earned =𝑠𝐼𝑒[
𝜁𝐷𝑆2
2 ] (39.20)

Interest paid =𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇
2

2 + 𝑇 (𝐶 − 𝑅))] (39.21)

Figure 5: Instant payment and Delayed payment in 𝐶 ≥ 𝑅 and 𝑅 ≥ 𝑇

𝑇𝑃2.2(𝑇 ) =
1
𝑇 [𝑝𝐷𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑆2
2 ] − (𝐶𝑜 + 𝐷𝑝𝑇

+ 𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇
2

2 + 𝑇 (𝐶 − 𝑅))] (39.22)

4 Theoretical Proof of Optimal Solution

The necessary and sufficient condition for determining the optimal solution for

all the cases of trade credit. A function 𝑞(𝑥) = 𝑓 (𝑥)
𝑔(𝑥) is Pseudo concave. if f(x) is

positive, differentiable and Convex and g(x) is non-negative, differentiable and
Concave by Cambini and Martein’s (2009) theorem 3.2.10. Cambini and Martein
(2009) Theorem 3.2.9 states that q(x) is strictly Pseudo- convex if f(x) is strictly
concave. Applying this to prove the TP(𝑇 ) is strictly concave. Where f(x) varies
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for each case but 𝑔(𝑥) = 𝑇 , which is differentiable and concave. Now following
theorem state that 𝑓𝑖(𝑥) is concave.

Theorem 4.1.1

(a) 𝑇𝑃1.1(𝑇 ) is strictly Pseudo concave function in 𝑇 , and hence exist a unique
maximum solution 𝑇 ∗1

(b) if 𝑅 ≤ 𝑇 ∗1 , then 𝑇𝑃1.1(𝑇 ) subject to 𝑅 ≤ 𝑇 is maximized at 𝑇 ∗1

(c) if 𝑅 ≥ 𝑇 ∗1 , then 𝑇𝑃1.1(𝑇 ) subject to 𝑅 ≤ 𝑇 is maximized at 𝑅

𝑓1 =[𝑝𝐷𝑇 + 𝑠𝐼𝑒[
𝜁𝐷𝑆2
2 + (1 − 𝜁 )𝐷(𝑅 − 𝐶)2

2 ] − (𝐶𝑜

+ 𝐻𝑐𝐷
2𝜗2 [𝑒𝜗(𝑇−2𝑇1)] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + 𝜁𝐷(𝑇 − 𝑅)2
2

+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)2
2 ])] (39.23)

Taking 𝑓1(𝑇 ) first and second-order differentiation into consideration

𝑑𝑓1
𝑑𝑇 =𝐷𝑝 − (𝐻𝑐𝐷

𝜗2 [ 𝑒
𝜗𝑇

𝜗 − 𝜗] − 𝐷[𝑒
−𝜗𝑇

𝜗2 ]
+ 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇 + 𝜁𝐷(𝑇 − 𝑅)
+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)]) (39.24)

𝑑2𝑓1
𝑑2𝑇 = − (𝐻𝑐𝐷𝑒𝜗𝑇

𝜗4 + 𝐷[𝑒
−𝜗𝑇

𝜗3 ]
+ 𝑐𝐼𝑝[(1 − 𝜂)2𝐷 + 𝜁𝐷 + (1 − 𝜁 )𝐷]) < 0 (39.25)

As a result of the pseudo concave function of 𝑇𝑃1.1(𝑇 ) = 𝑓1(𝑇 )/𝑔1(𝑇 ) proof the
(a) of theorem 4.1.1 and Result of (b)and (c) are directly preceded by (a) of theo-
rem 4.1.1
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To find 𝑇 ∗1 , we equate
𝑑𝑇𝑃1.1(𝑇 )

𝑑𝑇 = 0

𝑑𝑇𝑃1.1(𝑇 )
𝑑𝑇 = − [𝑝𝐷𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑆2
2 + (1 − 𝜁 )𝐷(𝑅 − 𝐶)2

2 ]

− (𝐶𝑜 +
𝐻𝑐𝐷
2𝜗2 [𝑒𝜗(𝑇−2𝑇1)] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + 𝜁𝐷(𝑇 − 𝑅)2
2

+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)2
2 ])] + 𝐷𝑝 − (𝐻𝑐𝐷

𝜗2 [ 𝑒
𝜗𝑇

𝜗 − 𝜗] − 𝐷[𝑒
−𝜗𝑇

𝜗2 ]
+ 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇 + 𝜁𝐷(𝑇 − 𝑅)
+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)]) = 0 (39.26)

Equation (26) proves that there is a unique 𝑇 ∗1 . if 𝑅 ≤ 𝑇 ∗1 , then 𝑇𝑃1.1(𝑇 ) is maxi-
mized at 𝑇 ∗1 otherwise, it is maximum at 𝑅

Theorem 4.1.2

(a) 𝑇𝑃1.2(𝑇 ) is strictly Pseudo concave function in 𝑇 , and hence exist a unique
maximum solution 𝑇 ∗2

(b) if 𝑅 ≤ 𝑇 ∗2 + 𝐶 , then 𝑇𝑃1.2(𝑇 ) subject to 𝑅 ≤ 𝑇 + 𝐶 is maximized at 𝑇 ∗2

(c) if 𝑅 ≥ 𝑇 ∗2 + 𝐶 , then 𝑇𝑃1.2(𝑇 ) subject to 𝑅 ≤ 𝑇 + 𝐶 is maximized at 𝑅 − 𝐶

𝑓2 =[𝐷𝑝𝑇 + 𝑠𝐼𝑒[
𝜁𝐷𝑆2
2 + (1 − 𝜁 )𝐷(𝑅 − 𝐶)2

2 ]

− (𝐶𝑜 +
𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + 𝜁𝐷(𝑇 − 𝑅)2
2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)2
2 ])] (39.27)

Taking 𝑓2(𝑇 ) first and second-order differentiation into consideration

405



Jayashri P & Umamaheswari S

𝑑𝑓2
𝑑𝑇 =𝐷𝑝 − (𝐻𝑐𝐷

𝜗2 [ 𝑒
𝜗𝑇

𝜗 − 𝜗 − 𝐷[𝑒
−𝜗𝑇

𝜗2 ] + 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇
+ 𝜁𝐷(𝑇 − 𝑅) + (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅) + (1 − 𝜂)𝐷(2𝑇 + 𝐶)]) (39.28)

𝑑2𝑓2
𝑑2𝑇 = − (𝐻𝑐𝐷𝑒𝜗𝑇

𝜗4 + 𝐷[𝑒
−𝜗𝑇

𝜗3 ] + 𝑐𝐼𝑝[(1 − 𝜂)2𝐷
+ 𝜁𝐷 + (1 − 𝜁 )𝐷 + 2(1 − 𝜂)𝐷]) < 0 (39.29)

As a results of the pseudo concave function of 𝑇𝑃1.2(𝑇 ) = 𝑓2(𝑇 )/𝑔2(𝑇 ) proof the
(a) of theorem 4.1.2 and Result of (b)and (c) are directly preceded by (a) of theo-
rem 4.1.2

To find 𝑇 ∗2 , we equate
𝑑𝑇𝑃1.2(𝑇 )

𝑑𝑇 = 0

𝑑𝑇𝑃1.2(𝑇 )
𝑑𝑇 = − [𝐷𝑝𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑆2
2 + (1 − 𝜁 )𝐷(𝑅 − 𝐶)2

2 ]

− (𝐶𝑜 +
𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1]

+ 𝐷[𝑒
−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉 + 𝑐𝐼𝑝[

(1 − 𝜂)2𝐷𝑇 2

2
+ 𝜁𝐷(𝑇 − 𝑅)2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅)2
2 ])] + 𝐷𝑝 − (𝐻𝑐𝐷

𝜗2 [ 𝑒
𝜗𝑇

𝜗 − 𝜗] − 𝐷[𝑒
−𝜗𝑇

𝜗2 ]
+ 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇 + 𝜁𝐷(𝑇 − 𝑅)
+ (1 − 𝜁 )𝐷(𝑇 + 𝐶 − 𝑅) + (1 − 𝜂)𝐷(2𝑇 + 𝐶)]) = 0 (39.30)

Equation (30) proves that their is a unique 𝑇 ∗2 . if 𝑅 ≤ 𝑇 ∗2 + 𝐶 , then 𝑇𝑃1.2(𝑇 ) is
maximized at 𝑇 ∗2 otherwise it is maximum at 𝑅 − 𝐶

Theorem 4.1.3

(a) 𝑇𝑃1.3(𝑇 ) is strictly Pseudo concave function in 𝑇 , and hence exist a unique
maximum solution 𝑇 ∗3

(b) if 𝑅 ≤ 𝑇 ∗3 + 𝐶 , then 𝑇𝑃1.3(𝑇 ) subject to 𝑅 ≥ 𝑇 + 𝐶 is maximized at 𝑇 ∗3
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(c) if 𝑅 ≥ 𝑇 ∗3 + 𝐶 , then 𝑇𝑃1.3(𝑇 ) subject to 𝑅 ≥ 𝑇 + 𝐶 is maximized at 𝑅 − 𝐶

𝑓3 =[𝐷𝑝𝑇 + 𝑠𝐼𝑒[
𝜁𝐷𝑇 2

2 + (1 − 𝜁 )𝐷𝑇 2

2
+ 𝜁𝐷𝑇 (𝑅 − 𝑇 ) + (1 − 𝜁 )𝐷𝑇 (𝑅 − 𝑇 − 𝐶)]

− (𝐶𝑜 +
𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 )] (39.31)

Taking 𝑓3(𝑇 ) first and second-order differentiation into consideration

𝑑𝑓3
𝑑𝑇 =𝐷𝑝 + 𝑠𝐼𝑒[𝜁𝐷𝑇 + (1 − 𝜁 )𝐷𝑇 + 𝜁𝐷(𝑅 − 2𝑇 )

+ (1 − 𝜁 )𝐷(𝑅 − 2𝑇 − 𝐶)] − (𝐻𝑐𝐷
𝜗2 [ 𝑒

𝜗𝑇

𝜗 − 𝜗]

+ 𝐷[𝑒
−𝜗𝑇

𝜗3 ] + 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇]) (39.32)

𝑑2𝑓3
𝑑2𝑇 =𝑠𝐼𝑒[𝜁𝐷 + (1 − 𝜁 )𝐷 − 2𝜁𝐷 − 2(1 − 𝜁 )𝐷]

− (𝐻𝑐𝐷𝑒𝜗𝑇
𝜗4 + 𝐷

𝜗 [𝑒
𝜗𝑇

𝜗 − 𝑒2𝜗𝑇
4𝜗2 ] + 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇]) < 0 (39.33)

As a result of the pseudo concave function of 𝑇𝑃1.3(𝑇 ) = 𝑓3(𝑇 )/𝑔3(𝑇 ) proof the
(a) of theorem 4.1.3 and Result of (b)and (c) are directly preceded by (a) of theo-
rem 4.1.3

407



Jayashri P & Umamaheswari S

To find 𝑇 ∗3 , we equate
𝑑𝑇𝑃1.3(𝑇 )

𝑑𝑇 = 0

𝑑𝑇𝑃1.3(𝑇 )
𝑑𝑇 = − [𝐷𝑝𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑇 2

2 + (1 − 𝜁 )𝐷𝑇 2

2
+ 𝜁𝐷𝑇 (𝑅 − 𝑇 ) + (1 − 𝜁 )𝐷𝑇 (𝑅 − 𝑇 − 𝐶)]

− (𝐶𝑜 +
𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 )] + 𝐷𝑝 + 𝑠𝐼𝑒[𝜁𝐷𝑇 + (1 − 𝜁 )𝐷𝑇 + 𝜁𝐷(𝑅 − 2𝑇 )

+ (1 − 𝜁 )𝐷(𝑅 − 2𝑇 − 𝐶)] − (𝐻𝑐𝐷
𝜗2 [ 𝑒

𝜗𝑇

𝜗 − 𝜗]

+ 𝐷[𝑒
−𝜗𝑇

𝜗3 ] + 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇]) = 0 (39.34)

Equation (34) proves that there is a unique 𝑇 ∗3 . if 𝑅 ≤ 𝑇 ∗3 + 𝐶 , then 𝑇𝑃1.3(𝑇 ) is
maximized at 𝑇 ∗3 otherwise, it is maximum at 𝑅 − 𝐶

Theorem 4.2.1

(a) 𝑇𝑃2.1(𝑇 ) is strictly Pseudo concave function in 𝑇 , and hence exist a unique
maximum solution 𝑇 ∗4

(b) if 𝑅 ≤ 𝑇 ∗4 , then 𝑇𝑃2.1(𝑇 ) subject to 𝑅 ≤ 𝑇 is maximized at 𝑇 ∗4

(c) if 𝑅 ≥ 𝑇 ∗4 , then 𝑇𝑃2.1(𝑇 ) subject to 𝑅 ≤ 𝑇 is maximized at 𝑅

𝑓4 =[𝐷𝑝𝑇 + 𝑠𝐼𝑒[
𝜁𝐷𝑇 2

2 ]

− (𝐶𝑜 +
𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗3 ]

+ 𝜉 + 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇
2

2 + 𝑇 (𝐶 − 𝑅))] (39.35)
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Taking 𝑓4(𝑇 ) first and second-order differentiation into consideration

𝑑𝑓4
𝑑𝑇 =𝐷𝑝 + 𝑠𝐼𝑒[𝜁𝐷𝑇 ] − (𝐻𝑐𝐷

𝜗2 [ 𝑒
𝜗𝑇

𝜗
− 𝜗] − 𝐷[𝑒

−𝜗𝑇

𝜗2 ] + 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇
+ (1 − 𝜂)𝐷(2𝑇 + 𝐶) + (1 − 𝜁 )𝐷[𝑇 + (𝐶 − 𝑅)]]) (39.36)

𝑑2𝑓4
𝑑2𝑇 =𝑠𝐼𝑒[𝜁𝐷] − (𝐻𝑐𝐷𝑒𝜗𝑇

𝜗4 + 𝐷
𝜗 [𝑒

𝜗𝑇

𝜗 − 𝑒2𝜗𝑇
4𝜗2 ]

+ 𝑐𝐼𝑝[(1 − 𝜂)2𝐷 + 2(1 − 𝜂)𝐷 + +(1 − 𝜁 )𝐷]) < 0 (39.37)

As a result, the pseudo concave function of 𝑇𝑃2.1(𝑇 ) = 𝑓4(𝑇 )/𝑔4(𝑇 )F. This proof
the (a) of theorem 4.2.1 and Result of (b)and (c) are directly preceded by (a) of
theorem 4.2.1

To find 𝑇 ∗4 , we equate
𝑑𝑇𝑃2.1(𝑇 )

𝑑𝑇 = 0

𝑑𝑇𝑃2.1(𝑇 )
𝑑𝑇 = − [𝐷𝑝𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑇 2

2 ]

− (𝐶𝑜 +
𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗3 ]

+ 𝜉 + 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇
2

2 + 𝑇 (𝐶 − 𝑅))] + 𝐷𝑝 + 𝑠𝐼𝑒[𝜁𝐷𝑇 ] − (𝐻𝑐𝐷
𝜗2 [ 𝑒

𝜗𝑇

𝜗
− 𝜗] − 𝐷[𝑒

−𝜗𝑇

𝜗2 ] + 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇
+ (1 − 𝜂)𝐷(2𝑇 + 𝐶) + (1 − 𝜁 )𝐷[𝑇 + (𝐶 − 𝑅)]]) = 0 (39.38)

Equation (38) proves that there is a unique 𝑇 ∗4 . if 𝑅 ≤ 𝑇 ∗4 , then 𝑇𝑃2.1(𝑇 ) is maxi-
mized at 𝑇 ∗4 otherwise, it is maximum at 𝑅

Theorem 4.2.2

(a) 𝑇𝑃2.2(𝑇 ) is strictly Pseudo concave function in 𝑇 , and hence exist a unique
maximum solution 𝑇 ∗5

(b) if 𝑅 ≥ 𝑇 ∗5 , then 𝑇𝑃2.2(𝑇 ) subject to 𝑠 ≤ 𝑇 is maximized at 𝑇 ∗5
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(c) if 𝑅 ≤ 𝑇 ∗5 , then 𝑇𝑃2.2(𝑇 ) subject to 𝑅 ≤ 𝑇 is maximized at 𝑅

𝑓5 =[𝐷𝑝𝑇 + 𝑠𝐼𝑒[
𝜁𝐷𝑆2
2 ] − (𝐶𝑜

+ 𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇
2

2 + 𝑇 (𝐶 − 𝑅))] (39.39)

Taking 𝑓5(𝑇 ) first and second-order differentiation into consideration

𝑑𝑓5
𝑑𝑇 =𝐷𝑝 − (𝐻𝑐𝐷

𝜗2 [ 𝑒
𝜗𝑇

𝜗 − 𝜗] − 𝐷[𝑒
−𝜗𝑇

𝜗2 ]
+ 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇 + (1 − 𝜂)𝐷(2𝑇 + 𝐶)
+ (1 − 𝜁 )𝐷[𝑇 + (𝐶 − 𝑅)]) (39.40)

𝑑2𝑓5
𝑑2𝑇 = − (𝐻𝑐𝐷𝑒𝜗𝑇

𝜗4 + 𝐷[𝑒
−𝜗𝑇

𝜗3 ]
+ 𝑐𝐼𝑝[(1 − 𝜂)2𝐷 + 2(1 − 𝜂)𝐷 + (1 − 𝜁 )𝐷]) < 0 (39.41)

As a results, the pseudo concave function of 𝑇𝑃2.2(𝑇 ) = 𝑓5(𝑇 )/𝑔5(𝑇 ). This proof
the (a) of theorem 4.2.2 and Result of (b)and (c) are directly preceded by (a) of
theorem 4.2.2
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To find 𝑇 ∗5 , we equate
𝑑𝑇𝑃2.2(𝑇 )

𝑑𝑇 = 0

𝑑𝑇𝑃2.2(𝑇 )
𝑑𝑇 = − [𝐷𝑝𝑇 + 𝑠𝐼𝑒[

𝜁𝐷𝑆2
2 ] − (𝐶𝑜

+ 𝐻𝑐𝐷
𝜗2 [𝑒𝜗𝑇 − 𝜗𝑇 − 1] + 𝐷[𝑒

−𝜗𝑇

𝜗 − 1
𝜗 − 1] + 𝜉

+ 𝑐𝐼𝑝[
(1 − 𝜂)2𝐷𝑇 2

2 + (1 − 𝜂)𝐷𝑇 (𝑇 + 𝐶)

+ (1 − 𝜁 )𝐷(𝑇
2

2 + 𝑇 (𝐶 − 𝑅))] + 𝐷𝑝−

(𝐻𝑐𝐷
𝜗2 [ 𝑒

𝜗𝑇

𝜗 − 𝜗] − 𝐷[𝑒
−𝜗𝑇

𝜗2 ]
+ 𝑐𝐼𝑝[(1 − 𝜂)2𝐷𝑇 + (1 − 𝜂)𝐷(2𝑇 + 𝑅)
+ (1 − 𝜁 )𝐷[𝑇 + (𝑅 − 𝑅)]) = 0 (39.42)

Equation (42) proves that there is a unique 𝑇 ∗5 . if 𝑅 ≥ 𝑇 ∗5 , then 𝑇𝑃2.2(𝑇 ) is maxi-
mized at 𝑇 ∗5 otherwise it is maximum at 𝑅

5 Conclusion

In this work, price dependent inventory model is discussed with preservation
technology under upstream and downstream trade credit. Total profit for vari-
ous cases are calculated. It is classified based on the credit period and it is sub-
classified based on items on hand. The optimal solution of all the sub-cases maxi-
mizes the retailer’s total profit. This model can be extended for optimal ordering
policy, two-level complete trade credit and so on.
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Notation
𝑐 Unit cost per unit time
𝐶𝑑 Deterioration cost
𝐶𝑜 Ordering cost
𝐶ℎ Holding cost
𝐶𝑠𝑟 Sales revenue
D Demand
𝐻𝑐 Inventory carrying cost
𝐼𝑝 Interest paid per unit time
𝐼𝑒 Interest earned per unit time
𝐼 (𝑡) Inventory level at time t, 0 ≤ 𝑡 ≤ 𝑇
𝑝 Purchase cost per unit time
𝑄 Replenishment at time 𝑇
𝐶 Retailers offer a trade credit period to their customer
𝑅 Suppliers offer a trade credit period to their retailer’s
𝑇 Length of the inventory cycle
𝑇𝑃 Total Profit
𝜗 Deterioration rate
𝜉 Preservation technique
𝜁 Retailer must pay the supplier a percentage of the purchase price

at the time of placing the order
1 − 𝜁 A credit period for a portion of the purchase cost

is offered to retailers
𝜂 A percent of the purchase cost that the customer

as to pay to the retailers
1 − 𝜂 Credit period for a portion of the purchase cost

is offered to customers.
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