
Fast Inverse Square Root using FPGA
Abhay Chopde, Sharvari Bodas, Varada Deshmukh, Shamish
Bramhekar
Department of Electronics and Telecommunication, Vishwakarma Institute of
Technology, Pune, India
Corresponding author: Sharvari Bodas, Email: sharvari.bodas21@vit.edu

The Fast Inverse Square Root (FISR) algorithm, originally introduced in the Quake
III source code, accomplishes the vector normalization task required in graphics
application through basic multiplication and bit-shifting operations. The core of
this algorithm relies on the use of approximation techniques to enhance an initial
estimation, which is primarily based on a designated “magic” constant. The im-
plemented Verilog code utilizes the Newton-Raphson iterations, modified booth’s
multiplier, and the inverse square root, featuring a core “Inverse Square Root”
module with 32-bit input and output. This paper makes use of two magic con-
stants “0x5f3e34bc” and “0x5f3759df” aiming to improve the accuracy. It selects a
magic constant based on the exponent bit. The approximation occurs through two
Newton-Raphson iterations. A Booth Multiplier is used, that is using a Radix-4
encoding scheme to reduce partial product generation, making it faster.
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1. Introduction 

In the field of computer 3D graphics, and scientific computing, accurate representation of real numbers 
in computers often requires the use of floating-point arithmetic. One common task is the calculation of 
inverse square root, which is typically implemented through iterative algorithms with initial 
approximations obtained from lookup tables or magic constants [1]. As a result, it makes it 
computationally difficult as more divisions as well as direct square root operation is needed which 
makes more usage of hardware and hence more utilization cost. In most of the cases due to this issue, 
accuracy might be compromised. This article focuses on fast inverse square root, aiming to reduce 
relative errors and improve accuracy, while also minimizing the number of required multiplication 
operations. The computation of the inverse square root function, a common operation in the gaming 
industry, is crucial for tasks such as vector normalization in computer graphics and ray tracing. Modern 
games involve millions of these calculations per second, emphasizing the need for an optimized 
approach. The Fast Inverse Square Root algorithm, initially introduced in Quake III’s source code, 
stands out for its efficiency, as it approximates the inverse square root with only one division operation. 
Despite its origins remaining unclear and the absence of formal literature discussing it, various 
attempts have been made to understand its mathematics and derive improved “magic constants” for 
enhanced accuracy and computational speed.  
 
The Fast Inverse Square Root algorithm is well-known for its speed and clever use of special numbers 
and bit operations. Our project aims to go even faster and more accurately by using two iterations of 
the Newton-Raphson method, a new way to compute the inverse square root that should be very 
efficient and precise. In addition to the two iterations of the Newton-Raphson method we have also 
designed a set of modular components for addition, subtraction and multiplication to minimize latency 
and maximize throughput, ensuring that our algorithm operates with the utmost efficiency. 
Additionally, at the core of our project to optimize arithmetic, we use the Modified Booth’s Algorithm. 
It’s a widely recognized method that makes multiplication more efficient by cutting down on the 
number of bit changes and time needed for each calculation. The core of Fast Inverse Square Root uses 
two magic constants to first calculate the approximate inverse square root. By including this technique 
in our project, our main goal is to provide an improved and thorough solution for calculating the 
inverse square root, with a strong focus on speed and accuracy. The hardware versions of the algorithm 
use special hard- ware like Field Programmable Gate Arrays (FPGAs) to make the calculations much 
faster. It was first created in 2007 and is used in inexpensive embedded systems and specialized 
hardware parts in CPUs and GPUs, mainly for graphics tasks. 

2. Literature Review 

The ‘Fast Inverse Square Root’ algorithm, often denoted as 0x5f3759df, is an enigmatic method for 
rapidly calculating the reciprocal square root (y = 1/sqrt(x)). Although its origins remain mysterious, it 
outperforms previous approaches by approximately fourfold and was first noticed in the Quake III 
source code before being utilized in game engines. This paper focuses on implementing the algorithm 
on an FPGA, emphasizing parallelism to enhance performance, making it one of the few attempts to 
create a hardware equivalent of this algorithm [2]. 
 
In this paper, the authors have introduced two adjustments to the well-known InvSqrt algorithm for 
efficient inverse square root computation. The first, named InvSqrt1, retains the original “magic” 
constant but enhances accuracy through modifications to the Newton-Raphson method, slightly 
increasing computational cost while improving precision by a factor of two or seven after one or two 
iterations, respectively. The second, InvSqrt2, employs a different “magic” constant with computational 
costs similar to InvSqrt but achieving accuracy akin to that of InvSqrt1. These modifications may prove 
beneficial in applications like embedded systems, microcontrollers without a Floating-Point Unit 
(FPU), and potentially FPGA-based solutions [3]. 
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In this paper, the authors have introduced a modified version of the widely known InvSqrt algorithm, 
tailored for the swift computation of the inverse square root in single-precision floating-point numbers. 
The revised code retained the same “magic” constant but underwent alterations in its second segment, 
which involves Newton- Raphson iterations. With just one iteration, the new code, InvSqrt1, 
maintained a similar computational cost to the original but delivered twice the level of accuracy. When 
two iterations were employed, the computational overhead increased marginally, while accuracy 
improved nearly sevenfold [4]. 
 
The method introduced allows for the efficient computation of elementary functions such as 
reciprocals, square roots, inverse square roots, logarithms, and exponentials through a unified 
approach. It offers competitive computational performance for reciprocal operations, while excelling in 
the calculation of square roots and inverse square roots, especially in double precision. Utilizing fixed-
point arithmetic and table look-ups, it provides accuracy and versatility across a range of elementary 
functions [5]. 
 
In this paper, the system introduces an efficient architecture for calculating square root and inverse 
square root values in IEEE 754 single-precision floating-point numbers. It employs a modified Quake’s 
algorithm with the Newton-Raphson method and utilizes a lookup table of carefully chosen magic 
numbers, implemented in VHDL and synthesized on a Xilinx Virtex 5 FPGA. This innovative design 
simultaneously computes both square root and inverse square root with high precision in just twelve 
clock cycles, offering significant value for numerical computing applications [6]. 
 
Scaling-less fixed-point Newton-Raphson implementation for an inverse square root operator, enabling 
size-generic and ready-to-use IP core integration. The design is pipelined for high-frequency processing 
and eliminates the need for memory blocks. It outperforms memory-based architectures, offering 
flexibility and efficiency for high-throughput digital signal processing applications [7]. 
 
This paper details a hardware implementation of the Newton-Raphson rounding algorithm, which is 
used for division and square root calculations. The hardware consists of a recode circuit to encode the 
multiplier into a redundant binary representation, a direct rounding mechanism for handling IEEE 754 
rounding modes, and a sticky digit generation circuit for error compensation. These components work 
in tandem to ensure accurate and efficient floating-point calculations while using the Newton-Raphson 
method [8]. 
 
This paper presents a scaling-less fixed-point Newton-Raphson implementation for an inverse square 
root operator, eliminating the need for mandatory scaling. It offers a versatile and resource-efficient IP 
core that adapts the first approximation based on a Leading One Detector and logical operations. The 
fully-pipelined design achieves a high clock frequency, making it ideal for diverse digital signal 
processing applications and is available as an open-source project to facilitate accessibility and further 
enhancements [9].  
 
The paper introduces a fast method for calculation of inverse square roots. This approach uses a 
modified Newton-Raphson iteration which minimizes delay as well as power consumption. It 
significantly reduces memory and area requirements compared to previous methods, making it ideal 
for applications involving IEEE single precision floating-point numbers and benefiting fields like 3D 
graphics [10]. 
 
The paper delves into optimizing the InvSqrt algorithm, used for calculating inverse square roots in 
applications such as 3D graphics and hardware implementations. It investigates the selection of a 
“magic constant” (R) and offers mathematical insights into the code, highlighting the impact of 
different magic constants on algorithm accuracy. The study introduces optimal magic constants and 
their adaptability, which can enhance the precision and performance of the algorithm in various 
contexts, particularly in floating-point hardware components [11]. 
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This paper presents an enhanced design for Modified Booth Encoder (MBE) multi
Digital Signal Processing (DSP) applications. The improved MBE architecture employs a sophisticated 
modified Booth encoder and selector to stream- line and minimize partial products, eliminating the 
need for an extra row in the multiplier array. Additionally, a novel hybrid two’s complementation logic 
leverages input signal arrival time disparities, resulting in substantial reductions in area and power 

on compared to conventional and alternative designs [12]. 

Verilog code has been implemented for the calculation of the inverse square root using the iterative 
InverseSquareRoot” module is at the core of this computat

bit integer input, and producing a 32-bit output, which represents the inverse square root of the 
input. To achieve this, the code that we have implemented, relies on registers and constants to store 
vital values and constants. Right bit shift operation is performed to half the number and it will be used 
in calculations with magic constant. The implemented code extracts the exponent bit.  

1. System architecture of Fast Inverse Square Root 

1. Represents the system architecture for the modified  algorithm.  

Depending on this exponent bit, the code selects an appropriate magic constant, ‘R’, which significantly 
impacts the precision of the approximation. The approximation process itself occurs in two iterations, 

Raphson method, gradually refining the result. Finally, the calculated 
approximation is assigned to the output signal.  

TopModule” serves as the top-level module that instantiates the “InverseSquareRoot” module, 
facilitating input and output at the system level. Thus, the Verilog code that we have implemented 
provides an effective methodology for approximating the inverse square root, employing an iterative 

Raphson approach with the consideration of registers, constants to ensure accuracy and 
precision. Different modules have been created for each specific operation e.g., rightbitshift for shifting 
the input number to right thus dividing the number in half or subtractor module for subtracti
multiplication operations, modifiedbooth has been create which essentially performs multiplications. A 
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them faster and more resource-efficient than conventional multipliers [13]. They are especially well-
suited for applications requiring high-speed and low-power binary multiplication, such as digital signal 
processing, arithmetic units, and microprocessor design [14]. 
 
In Top Module all these other modules are called as per their functionality. In this way, to perform 
newton Raphson iteration 1, subtractor and modifiedbooth module will be called as per the operation 
required. 

 
Figure 2. System flow of the algorithm 

 
Figure 2. represents flowchart of the system in detail. It uses right bit shift module for dividing the 
number In half, subtractor module for the process of subtraction in Xint, and multiplier module for 
newton Raphson iterations. 
 

 

Input number x 

Check power of 
exponent 

Xinv = R – x >> 1 

ynew = ynew * (1.50000086f - 
0.999124984f * Xhalf * y * y 

ynew = y *(1.50131454f - 
Xhalf * y * y) 

R = 0x5f3e34bc 

Power 
is even 

R = 0x5f3759df 

True False 

Display ynew as inverse 
square root 
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______________________________________ 

Algorithm 1: Previously proposed algorithm 

______________________________________ 

Input: x  

Output: y  

 Initialisation: 

1: xhalf= 0.5 ∗ x 

2: xint= (x as an integer) 

3: xint= 0x5f3759df − (xint >> 1) 

4: y = (xint as a float) 

5: y = y ∗ (1.5 − xhalf ∗ y ∗ y) 

______________________________________ 

Algorithm 2: Improved Algorithm 

______________________________________ 

Input: x  

Output: y  

Initialisation: 

1: xhalf= 0.500438180f ∗ x 

2: xint= (x as an integer) 

3: e = exp(x) % 2 == 0 

4: R = e ? 0x5f3e34bc : 0x5f3759df 

5: xint= R − (xint >> 1) 

6: y = (xint as a float) 

7: y = y ∗ (1.5013454f − xhalf ∗ y ∗ y) 

8: y*(1.50000086f – 0.999124984f * xhalf * y *y 

 
The values used for Newton-Raphson iteration are used from the paper [4].  
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Comparison of the two Algorithms: Algorithm 2 is an upgraded version of Algorithm 1 for 
estimating the inverse square root of a floating-point number ‘x’. Both algorithms use dynamic ’R’, 
which is the magic constant , selection based on the exponent of ‘x’, but Algorithm 2 further refines the 
approximation through two iterations, uses more precise constants, and includes an additional 
multiplication term. This leads to improved accuracy, when compared to Algorithm 1, which involves 
just one iteration and simpler constants. However increased precision leads to a slightly higher 
computational complexity compared to Algorithm 1, which has a single iteration. 

5. Results 

The schematic diagram obtained from the implemented code is given below. 
Figure 3 and 4 represent the schematic diagram for the fast inverse square root implemented. It uses 
Right bit shift and subtractor to approximately calculate the inverse square root of the number. Newton 
Raphson iterations are implemented with the help of subtractors and multipliers to get more accurate 
results. 

 

 
Figure 3. - Continuous schematic 

 

 
Figure 4.  Zoomed schematic 

 

As we can see in the figure 3 of continuous schematic, output of one stage is passed on to the other as 
its input. The output of the first right bit shift is passed on to the sub1 which essentially performs the 
operation of  xinv = R – xint <<1. This step essentially calculates approximate value of the inverse 
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square root for the given number. Similarly, outputs of sub1 and sub2 are x_int = R - (x_int >> 1) and 
1.50131454f - Xhalf * y * y respectively which are then passed on to mul4 which calculates the first 
Newton Raphson iteration value of the fast inverse square root. 
   

Table 1. Slice logic utilization 

 
 
Table 1. Indicates utilization of slice LUTs and slice registers. Utilization of LUTs used as logic is 2.32%. 
Utilization for these look up tables is only for the purpose of logic and are used as memory unit. 
Utilization of registers which are used as flip flop for storage purpose is  0.20%. 

6. Conclusion 

In conclusion, our project is an innovative and practical approach to computing the inverse square root 
efficiently. The fast inverse square root algorithm has diverse applications, spanning from signal 
processing to 3D rendering and gaming engines. By implementing this algorithm with two magic 
constants, its performance, precision, and efficiency have been significantly enhanced, all while 
requiring fewer hardware resources and consuming less power. The incorporation of the two magic 
constants also extends the applicability of the inverse square root operation to a wide range of fields 
and applications. 
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