
Fast Inverse Square Root using FPGA
Abhay Chopde, Sharvari Bodas, Varada Deshmukh, Shamish
Bramhekar
Department of Electronics and Telecommunication, Vishwakarma Institute of
Technology, Pune, India
Corresponding author: Sharvari Bodas, Email: sharvari.bodas21@vit.edu

The Fast Inverse Square Root (FISR) algorithm, originally introduced in the Quake
III source code, accomplishes the vector normalization task required in graphics
application through basic multiplication and bit-shifting operations. The core of
this algorithm relies on the use of approximation techniques to enhance an initial
estimation, which is primarily based on a designated “magic” constant. The im-
plemented Verilog code utilizes the Newton-Raphson iterations, modified booth’s
multiplier, and the inverse square root, featuring a core “Inverse Square Root”
module with 32-bit input and output. This paper makes use of two magic con-
stants “0x5f3e34bc” and “0x5f3759df” aiming to improve the accuracy. It selects a
magic constant based on the exponent bit. The approximation occurs through two
Newton-Raphson iterations. A Booth Multiplier is used, that is using a Radix-4
encoding scheme to reduce partial product generation, making it faster.

Keywords: FPGA, Fast inverse square root, Radix 4 Booth’s multiplier.

in: Advancements in Communication and Systems. Ed. by Ashish Kumar Tri-
pathi and Vivek Shrivastava. Computing and Intelligent Systems, SCRS, In-
dia., 2023, pp. 231–239. doi: https://doi.org/10.56155/978-81-955020-7-3-21

1. Introduction

In the field of computer 3D graphics, and scientific computing, accurate representation of real numbers
in computers often requires the use of floating-point arithmetic. One common task is the calculation of
inverse square root, which is typically implemented through iterative algorithms with initial
approximations obtained from lookup tables or magic constants [1]. As a result, it makes it
computationally difficult as more divisions as well as direct square root operation is needed which
makes more usage of hardware and hence more utilization cost. In most of the cases due to this issue,
accuracy might be compromised. This article focuses on fast inverse square root, aiming to reduce
relative errors and improve accuracy, while also minimizing the number of required multiplication
operations. The computation of the inverse square root function, a common operation in the gaming
industry, is crucial for tasks such as vector normalization in computer graphics and ray tracing. Modern
games involve millions of these calculations per second, emphasizing the need for an optimized
approach. The Fast Inverse Square Root algorithm, initially introduced in Quake III’s source code,
stands out for its efficiency, as it approximates the inverse square root with only one division operation.
Despite its origins remaining unclear and the absence of formal literature discussing it, various
attempts have been made to understand its mathematics and derive improved “magic constants” for
enhanced accuracy and computational speed.

The Fast Inverse Square Root algorithm is well-known for its speed and clever use of special numbers
and bit operations. Our project aims to go even faster and more accurately by using two iterations of
the Newton-Raphson method, a new way to compute the inverse square root that should be very
efficient and precise. In addition to the two iterations of the Newton-Raphson method we have also
designed a set of modular components for addition, subtraction and multiplication to minimize latency
and maximize throughput, ensuring that our algorithm operates with the utmost efficiency.
Additionally, at the core of our project to optimize arithmetic, we use the Modified Booth’s Algorithm.
It’s a widely recognized method that makes multiplication more efficient by cutting down on the
number of bit changes and time needed for each calculation. The core of Fast Inverse Square Root uses
two magic constants to first calculate the approximate inverse square root. By including this technique
in our project, our main goal is to provide an improved and thorough solution for calculating the
inverse square root, with a strong focus on speed and accuracy. The hardware versions of the algorithm
use special hard- ware like Field Programmable Gate Arrays (FPGAs) to make the calculations much
faster. It was first created in 2007 and is used in inexpensive embedded systems and specialized
hardware parts in CPUs and GPUs, mainly for graphics tasks.

2. Literature Review

The ‘Fast Inverse Square Root’ algorithm, often denoted as 0x5f3759df, is an enigmatic method for
rapidly calculating the reciprocal square root (y = 1/sqrt(x)). Although its origins remain mysterious, it
outperforms previous approaches by approximately fourfold and was first noticed in the Quake III
source code before being utilized in game engines. This paper focuses on implementing the algorithm
on an FPGA, emphasizing parallelism to enhance performance, making it one of the few attempts to
create a hardware equivalent of this algorithm [2].

In this paper, the authors have introduced two adjustments to the well-known InvSqrt algorithm for
efficient inverse square root computation. The first, named InvSqrt1, retains the original “magic”
constant but enhances accuracy through modifications to the Newton-Raphson method, slightly
increasing computational cost while improving precision by a factor of two or seven after one or two
iterations, respectively. The second, InvSqrt2, employs a different “magic” constant with computational
costs similar to InvSqrt but achieving accuracy akin to that of InvSqrt1. These modifications may prove
beneficial in applications like embedded systems, microcontrollers without a Floating-Point Unit
(FPU), and potentially FPGA-based solutions [3].

Abhay Chopde, Sharvari Bodas, Varada Deshmukh, Shamish Bramhekar

232

In this paper, the authors have introduced a modified version of the widely known InvSqrt algorithm,
tailored for the swift computation of the inverse square root in single-precision floating-point numbers.
The revised code retained the same “magic” constant but underwent alterations in its second segment,
which involves Newton- Raphson iterations. With just one iteration, the new code, InvSqrt1,
maintained a similar computational cost to the original but delivered twice the level of accuracy. When
two iterations were employed, the computational overhead increased marginally, while accuracy
improved nearly sevenfold [4].

The method introduced allows for the efficient computation of elementary functions such as
reciprocals, square roots, inverse square roots, logarithms, and exponentials through a unified
approach. It offers competitive computational performance for reciprocal operations, while excelling in
the calculation of square roots and inverse square roots, especially in double precision. Utilizing fixed-
point arithmetic and table look-ups, it provides accuracy and versatility across a range of elementary
functions [5].

In this paper, the system introduces an efficient architecture for calculating square root and inverse
square root values in IEEE 754 single-precision floating-point numbers. It employs a modified Quake’s
algorithm with the Newton-Raphson method and utilizes a lookup table of carefully chosen magic
numbers, implemented in VHDL and synthesized on a Xilinx Virtex 5 FPGA. This innovative design
simultaneously computes both square root and inverse square root with high precision in just twelve
clock cycles, offering significant value for numerical computing applications [6].

Scaling-less fixed-point Newton-Raphson implementation for an inverse square root operator, enabling
size-generic and ready-to-use IP core integration. The design is pipelined for high-frequency processing
and eliminates the need for memory blocks. It outperforms memory-based architectures, offering
flexibility and efficiency for high-throughput digital signal processing applications [7].

This paper details a hardware implementation of the Newton-Raphson rounding algorithm, which is
used for division and square root calculations. The hardware consists of a recode circuit to encode the
multiplier into a redundant binary representation, a direct rounding mechanism for handling IEEE 754
rounding modes, and a sticky digit generation circuit for error compensation. These components work
in tandem to ensure accurate and efficient floating-point calculations while using the Newton-Raphson
method [8].

This paper presents a scaling-less fixed-point Newton-Raphson implementation for an inverse square
root operator, eliminating the need for mandatory scaling. It offers a versatile and resource-efficient IP
core that adapts the first approximation based on a Leading One Detector and logical operations. The
fully-pipelined design achieves a high clock frequency, making it ideal for diverse digital signal
processing applications and is available as an open-source project to facilitate accessibility and further
enhancements [9].

The paper introduces a fast method for calculation of inverse square roots. This approach uses a
modified Newton-Raphson iteration which minimizes delay as well as power consumption. It
significantly reduces memory and area requirements compared to previous methods, making it ideal
for applications involving IEEE single precision floating-point numbers and benefiting fields like 3D
graphics [10].

The paper delves into optimizing the InvSqrt algorithm, used for calculating inverse square roots in
applications such as 3D graphics and hardware implementations. It investigates the selection of a
“magic constant” (R) and offers mathematical insights into the code, highlighting the impact of
different magic constants on algorithm accuracy. The study introduces optimal magic constants and
their adaptability, which can enhance the precision and performance of the algorithm in various
contexts, particularly in floating-point hardware components [11].

Advancements in Communication and Systems

233

This paper presents an enhanced design for Modi
Digital Signal Processing (DSP) applications. The improved MBE architecture employs a sophisticated
modified Booth encoder and selector to stream
need for an extra row in the multiplier array. Additionally, a novel hybrid two’s complementation logic
leverages input signal arrival time disparities, resulting in substantial reductions in area and power
consumption compared to conventional and alternative designs [12].

3. Methodology

Verilog code has been implemented for the calculation of the inverse square root using the iterative
Newton-Raphson method. The “InverseSquareRoot” module is at the core of this computat
32-bit integer input, and producing a 32
input. To achieve this, the code that we have implemented, relies on registers and constants to store
vital values and constants. Right bit s
in calculations with magic constant. The implemented code extracts the exponent bit.

Figure 1.

Above Figure 1. Represents the system architecture for the modified

Depending on this exponent bit, the code selects an appropriate magic constant, ‘R
impacts the precision of the approximation. The approximation process itself occu
following the Newton-Raphson method, gradually refining the result. Finally, the calculated
approximation is assigned to the output signal.

4. Verilog Code

The “TopModule” serves as the top
facilitating input and output at the system level. Thus, the Verilog code that we have implemented
provides an effective methodology for approximating the inverse square root, employing an iterative
Newton-Raphson approach with the consid
precision. Different modules have been created for each specific operation e.g., rightbitshift for shifting
the input number to right thus dividing the number in half or subtractor module for subtracti
multiplication operations, modifiedbooth has been create which essentially performs multiplications. A
Booth Multiplier is a hardware-
architecture and digital signal processing. It e
of partial products generated during multiplication. By efficiently encoding and processing four bits of
binary data at a time, Booth Multi

This paper presents an enhanced design for Modified Booth Encoder (MBE) multi
Digital Signal Processing (DSP) applications. The improved MBE architecture employs a sophisticated
modified Booth encoder and selector to stream- line and minimize partial products, eliminating the
need for an extra row in the multiplier array. Additionally, a novel hybrid two’s complementation logic
leverages input signal arrival time disparities, resulting in substantial reductions in area and power

on compared to conventional and alternative designs [12].

Verilog code has been implemented for the calculation of the inverse square root using the iterative
InverseSquareRoot” module is at the core of this computat

bit integer input, and producing a 32-bit output, which represents the inverse square root of the
input. To achieve this, the code that we have implemented, relies on registers and constants to store
vital values and constants. Right bit shift operation is performed to half the number and it will be used
in calculations with magic constant. The implemented code extracts the exponent bit.

1. System architecture of Fast Inverse Square Root

1. Represents the system architecture for the modified algorithm.

Depending on this exponent bit, the code selects an appropriate magic constant, ‘R’, which significantly
impacts the precision of the approximation. The approximation process itself occurs in two iterations,

Raphson method, gradually refining the result. Finally, the calculated
approximation is assigned to the output signal.

TopModule” serves as the top-level module that instantiates the “InverseSquareRoot” module,
facilitating input and output at the system level. Thus, the Verilog code that we have implemented
provides an effective methodology for approximating the inverse square root, employing an iterative

Raphson approach with the consideration of registers, constants to ensure accuracy and
precision. Different modules have been created for each specific operation e.g., rightbitshift for shifting
the input number to right thus dividing the number in half or subtractor module for subtracti
multiplication operations, modifiedbooth has been create which essentially performs multiplications. A

-based digital circuit used for binary multiplication in computer
architecture and digital signal processing. It employs a Radix-4 encoding scheme to reduce the number
of partial products generated during multiplication. By efficiently encoding and processing four bits of
binary data at a time, Booth Multi- pliers significantly optimize the multiplication process, mak

fied Booth Encoder (MBE) multipliers, crucial in
Digital Signal Processing (DSP) applications. The improved MBE architecture employs a sophisticated

imize partial products, eliminating the
need for an extra row in the multiplier array. Additionally, a novel hybrid two’s complementation logic
leverages input signal arrival time disparities, resulting in substantial reductions in area and power

Verilog code has been implemented for the calculation of the inverse square root using the iterative
InverseSquareRoot” module is at the core of this computation, taking a

bit output, which represents the inverse square root of the
input. To achieve this, the code that we have implemented, relies on registers and constants to store

hift operation is performed to half the number and it will be used

, which significantly
rs in two iterations,

Raphson method, gradually refining the result. Finally, the calculated

uareRoot” module,
facilitating input and output at the system level. Thus, the Verilog code that we have implemented
provides an effective methodology for approximating the inverse square root, employing an iterative

eration of registers, constants to ensure accuracy and
precision. Different modules have been created for each specific operation e.g., rightbitshift for shifting
the input number to right thus dividing the number in half or subtractor module for subtractions. For
multiplication operations, modifiedbooth has been create which essentially performs multiplications. A

based digital circuit used for binary multiplication in computer
4 encoding scheme to reduce the number

of partial products generated during multiplication. By efficiently encoding and processing four bits of
pliers significantly optimize the multiplication process, making

Abhay Chopde, Sharvari Bodas, Varada Deshmukh, Shamish Bramhekar

234

them faster and more resource-efficient than conventional multipliers [13]. They are especially well-
suited for applications requiring high-speed and low-power binary multiplication, such as digital signal
processing, arithmetic units, and microprocessor design [14].

In Top Module all these other modules are called as per their functionality. In this way, to perform
newton Raphson iteration 1, subtractor and modifiedbooth module will be called as per the operation
required.

Figure 2. System flow of the algorithm

Figure 2. represents flowchart of the system in detail. It uses right bit shift module for dividing the
number In half, subtractor module for the process of subtraction in Xint, and multiplier module for
newton Raphson iterations.

Input number x

Check power of
exponent

Xinv = R – x >> 1

ynew = ynew * (1.50000086f -
0.999124984f * Xhalf * y * y

ynew = y *(1.50131454f -
Xhalf * y * y)

R = 0x5f3e34bc

Power
is even

R = 0x5f3759df

True False

Display ynew as inverse
square root

Advancements in Communication and Systems

235

Algorithm 1: Previously proposed algorithm

Input: x

Output: y

 Initialisation:

1: xhalf= 0.5 ∗ x

2: xint= (x as an integer)

3: xint= 0x5f3759df − (xint >> 1)

4: y = (xint as a float)

5: y = y ∗ (1.5 − xhalf ∗ y ∗ y)

Algorithm 2: Improved Algorithm

Input: x

Output: y

Initialisation:

1: xhalf= 0.500438180f ∗ x

2: xint= (x as an integer)

3: e = exp(x) % 2 == 0

4: R = e ? 0x5f3e34bc : 0x5f3759df

5: xint= R − (xint >> 1)

6: y = (xint as a float)

7: y = y ∗ (1.5013454f − xhalf ∗ y ∗ y)

8: y*(1.50000086f – 0.999124984f * xhalf * y *y

The values used for Newton-Raphson iteration are used from the paper [4].

Abhay Chopde, Sharvari Bodas, Varada Deshmukh, Shamish Bramhekar

236

Comparison of the two Algorithms: Algorithm 2 is an upgraded version of Algorithm 1 for
estimating the inverse square root of a floating-point number ‘x’. Both algorithms use dynamic ’R’,
which is the magic constant , selection based on the exponent of ‘x’, but Algorithm 2 further refines the
approximation through two iterations, uses more precise constants, and includes an additional
multiplication term. This leads to improved accuracy, when compared to Algorithm 1, which involves
just one iteration and simpler constants. However increased precision leads to a slightly higher
computational complexity compared to Algorithm 1, which has a single iteration.

5. Results

The schematic diagram obtained from the implemented code is given below.
Figure 3 and 4 represent the schematic diagram for the fast inverse square root implemented. It uses
Right bit shift and subtractor to approximately calculate the inverse square root of the number. Newton
Raphson iterations are implemented with the help of subtractors and multipliers to get more accurate
results.

Figure 3. - Continuous schematic

Figure 4. Zoomed schematic

As we can see in the figure 3 of continuous schematic, output of one stage is passed on to the other as
its input. The output of the first right bit shift is passed on to the sub1 which essentially performs the
operation of xinv = R – xint <<1. This step essentially calculates approximate value of the inverse

Advancements in Communication and Systems

237

square root for the given number. Similarly, outputs of sub1 and sub2 are x_int = R - (x_int >> 1) and
1.50131454f - Xhalf * y * y respectively which are then passed on to mul4 which calculates the first
Newton Raphson iteration value of the fast inverse square root.

Table 1. Slice logic utilization

Table 1. Indicates utilization of slice LUTs and slice registers. Utilization of LUTs used as logic is 2.32%.
Utilization for these look up tables is only for the purpose of logic and are used as memory unit.
Utilization of registers which are used as flip flop for storage purpose is 0.20%.

6. Conclusion

In conclusion, our project is an innovative and practical approach to computing the inverse square root
efficiently. The fast inverse square root algorithm has diverse applications, spanning from signal
processing to 3D rendering and gaming engines. By implementing this algorithm with two magic
constants, its performance, precision, and efficiency have been significantly enhanced, all while
requiring fewer hardware resources and consuming less power. The incorporation of the two magic
constants also extends the applicability of the inverse square root operation to a wide range of fields
and applications.

7. Acknowledgement

The concept of using two magic constants and deciding the value based off of index of the exponent is
implemented with the help of Jay Pargaonkar, Parth Kulkarni and Soumil Paranjpay Department of
Electronics & Telecommunication, Vishwakarma Institute of Technology Pune, India.

References

[1] Horyachyy, Oleh, L. Moroz, and Viktor Otenko. "Simple effective fast inverse square root algorithm with
two magic constants." Int. J. Comput 18 (2019): 461-470.

[2] Zafar, Saad, and Raviteja Adapa. "Hardware architecture design and mapping of ‘Fast Inverse Square Root’
algorithm." In 2014 International Conference on Advances in Electrical Engineering (ICAEE), pp. 1-4.
IEEE, 2014.

[3] Walczyk, Cezary J., Leonid V. Moroz, and Jan L. Cieśliński. "Improving the accuracy of the fast inverse
square root algorithm." arXiv preprint arXiv:1802.06302 (2018).

Abhay Chopde, Sharvari Bodas, Varada Deshmukh, Shamish Bramhekar

238

[4] Walczyk, Cezary J., Leonid V. Moroz, and Jan L. Cieśliński. "A modification of the fast inverse square root
algorithm." Computation 7, no. 3 (2019): 41.

[5] Ercegovac, Milos D., Tomás Lang, J-M. Muller, and Arnaud Tisserand. "Reciprocation, square root, inverse
square root, and some elementary functions using small multipliers." IEEE Transactions on computers 49,
no. 7 (2000): 628-637.

[6] Hasnat, Abul, Tanima Bhattacharyya, Atanu Dey, Santanu Halder, and Debotosh Bhattacharjee. "A fast
FPGA based architecture for computation of square root and Inverse Square Root." In 2017 Devices for
Integrated Circuit (DevIC), pp. 383-387. IEEE, 2017.

[7] Libessart, Erwan, Matthieu Arzel, Cyril Lahuec, and Francesco Andriulli. "A scaling-less Newton-Raphson
pipelined implementation for a fixed-point inverse square root operator." In 2017 15th IEEE International
New Circuits and Systems Conference (NEWCAS), pp. 157-160. IEEE, 2017.

[8] Kabuo, Hideyuki, Takashi Taniguchi, Akira Miyoshi, Hitoshi Yamashita, Miki Urano, Hisakazu Edamatsu,
and Shigeo Kuninobu. "Accurate rounding scheme for the Newton-Raphson method using redundant
binary representation." IEEE Transactions on Computers 43, no. 1 (1994): 43-51.

[9] Libessart, Erwan, Matthieu Arzel, Cyril Lahuec, and Francesco Andriulli. "A scaling-less Newton-Raphson
pipelined implementation for a fixed-point inverse square root operator." In 2017 15th IEEE International
New Circuits and Systems Conference (NEWCAS), pp. 157-160. IEEE, 2017.

[10] Schulte, Michael J., and Kent E. Wires. "High-speed inverse square roots." In Proceedings 14th IEEE
Symposium on Computer Arithmetic (Cat. No. 99CB36336), pp. 124-131. IEEE, 1999.

[11] Moroz, Leonid V., Cezary J. Walczyk, Andriy Hrynchyshyn, Vijay Holimath, and Jan L. Cieśliński. "Fast
calculation of inverse square root with the use of magic constant–analytical approach." Applied
Mathematics and Computation 316 (2018): 245-255.

[12] Wang, Li-Rong, Shyh-Jye Jou, and Chung-Len Lee. "A well-structured modified Booth multiplier design."
In 2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 85-88.
IEEE, 2008.

[13] Hussin, Razaidi, Ali Yeon Md Shakaff, Norina Idris, Zaliman Sauli, Rizalafande Che Ismail, and Afzan
Kamarudin. "An efficient modified booth multiplier architecture." In 2008 International Conference on
Electronic Design, pp. 1-4. IEEE, 2008.

[14] Mishra, Ravi Shankar, Puran Gour, and Braj Bihari Soni. "Design and Implements of Booth and
Robertson’s multipliers algorithm on FPGA." International Journal of Engineering Research and
Applications (IJERA) 1, no. 3 (2011): 905-910.

Advancements in Communication and Systems

239

