
Performance Comparison of the
Proposed OpenFlow Network with the
Pox Controller and the Traditional
Network in Software Defined Networks
(SDN)
Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav
Noida Institute of Engineering Technology, India
Corresponding author: Priya Gautam, Email: priya10800@gmail.com

The dynamic structure of today’s networking system, in which the control plane is
fully dispersed throughout the network and networking equipment (e.g., switches,
routers) have their own local control-plane and data-plane, makes networking
system management more complicated. Networking paradigm that can be pro-
grammed by separating the management function from the networking elements
and putting it in a logically centralised control plane, SDN makes it simple to ad-
minister and operate this dynamic networking system. The separation of the con-
trol and data planes facilitates the forwarding devices. These straightforward for-
warding devices are managed, controlled, and configured by a logically centralised
control-plane. The network operating system is a common term used to describe
the control plane of SDN. The purpose of this dissertation is to evaluate the per-
formance of an OpenFlow enabled software defined network model with a POX
controller to that of a traditional network. Mininet is a tool that is used to design
and analyse traditional and programmable networks. Latency, throughput, packet
loss, and jitter characteristics are used to evaluate performance.

Keywords:SDN, OpenFlow, Mininet, POX, Throughput, Latency.

2023. In Saroj Hiranwal & Garima Mathur (eds.), Artificial Intelligence and
Communication Technologies, 537–552. Computing & Intelligent Systems,
SCRS, India. https://doi.org/10.52458/978-81-955020-5-9-52

1 Introduction

The control plane of a typical networking system is totally dispersed. A networking device's

control and data planes are independent. The data-plane forwards packets according to the

control-forwarding plane's regulations. When packets arrive at a networking device, integrated

firmware instructs the hardware where the packet should be forwarded. Any changes to the

forwarding policy necessitate reconfiguring the nodes with their own interface, which

necessitates the network administrator manually doing low-level setup on these vendor-specific

networking devices via the CLI. Researchers are also limited in their ability to design and test

their applications due to the lack of an open standard interface. In the traditional networking

paradigm, horizontal network scalability is also a tough task. As a result, managing such a

dynamic and state-changing network is a difficult undertaking.

By isolating the control and data planes, SDN simplifies the creation and administration of

networks. It removes the networking devices' control functionality, resulting in a simple data

forwarding element (e.g., OpenFlow switch). The control mechanism for the network is kept in a

logically centralised controller (Network Operating System), which gives an abstract image of the

network and aids in direct programmability. The SDN concept involves separating network

regulation creation, implementation in hardware devices, and traffic forwarding [1]. SDN

contains three open APIs to govern the communication protocol across logically centralised

controllers: Interfaces for the southbound, northbound, and east-westbound directions (e.g.,

Flow visor). The goals of these interfaces are described in [2.]

One of the most prominent standard protocols and the most widely used SDN technology is

OpenFlow. Stanford University was the first to suggest it. OpenFlow is the first industry-

recognized protocol for data-plane and control-plane communication in SDN architecture,

according to the open network foundation (ONF) [3].

2 Traditional Networking Architecture

The control-plane, data-planes, and management plane are all integrated with dedicated

networking devices in a typical networking system (switch, router). The data-planes are in charge

of forwarding incoming packets. The arriving packets are handled by the data-plane according

to the controlling function that is configured and stored in the dedicated device's firmware. All

arriving packets for the same destination are processed in the same way, according to the

firmware's regulations.
Smart switches with application integrated circuits (ASICs) are programmed in such a way that

they can recognise and treat various types of packets in different ways. Some networking devices

(for example, Cisco routers) can handle distinct types of packets in different ways. The Cisco

router also allows you to prioritise flows in order to properly handle traffic. These devices are

quite expensive, and their performance is limited when there is a lot of network traffic. The

automation of the network is also limited by traditional network architecture. Figure 1 illustrates

this. Each networking device has its own data plane and control plane. The current networking

system's control method is distributed. It also restricts the network's automation. The entire

network is not under centralised control. To obtain the network's overall status, each networking

device must synchronise with one another.

Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav

538

Figure 1. Architecture of Traditional network

3 Software Defined Networking (SDN) Architecture

SDN is a relatively new method to programmable networking. Before SDN and OpenFlow,

various methods to programmable networking systems were explored. SOFTNET was one of the

first. The commands were inserted to the content of each packet in SOFTNET to change the

functionality of a network device. The commands were created using the SOFTNET

programming language.

Figure 2. Architecture of SDN

Data

plane

Control

plane

Data

plane

Control

plane

Data

plane

Control

plane

App App App

Control

plane

 Data

plane

Control Layer

Application Layer

Infrastructure Layer

Northbound interface

Forwarding

device

Forwarding

device

Forwarding

device
Forwarding

device

controller controller

Logically centralized controllers

East-west interface

Southbound interface

applications Traffic monitoring firewall

Artificial Intelligence and Communication Technologies

539

Figure 2 depicts the simplified design of a software defined network (SDN), which is a three-

layer architecture –

 Application Layer

 Control Layer

 Infrastructure Layer

Simple forwarding networking nodes are connected in the infrastructure layer. The data-

infrastructure plane's layer oversees forwarding packets and monitoring local data. The

control layer, also known as the network operating system (NOS), contains the network's

intelligence and provides centralised control over the data plane [16]. It comprises of a

logically centralised controller that controls the forwarding elements in concert. The

application layer contains the application (for example, a traffic monitoring or firewall

programme). The network flows are controlled by the logic of these apps. In SDN, three

interfaces are used –

 Southbound interface

 Northbound interface

 East-west interface

The southbound interface allows controllers and forwarding devices to communicate more

easily. The OpenFlow API is the most widely used southbound interface in SDN.

The control plane and application layer communicate via a northbound interface. The

controllers interact using an East-West interface.

4 Difference Between SDN Architecture And Current
Network Architecture

Current networking architecture SDN architecture

Protocol that is fully distributed APIs that are logically controlled by a single
piece of software

Automation is conceivable, but it is time-
consuming

All devices have a same interface (API).

Proprietary interface APIs for data access and manipulation

Individual configuration of devices Central control

On devices, the flowchart is closed. Formats and actions on tables that are
explicitly defined.

Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav

540

5 Openflow Based Software Defined Network
Architecture

OpenFlow is a flow-based protocol that allows the SDN concept to be implemented in both

hardware and software [4]. The OpenFlow-based network design is shown in Figure 3. OpenFlow

networks typically consist of three key elements: (a) OpenFlow switches, (b) OpenFlow

Controller, and (c) OpenFlow protocol.

A. OpenFlow Switch

The flow table is used by switches to manage incoming packets. Flow entries are kept in

descending order of priority in the flow table. Each flow entry has (a) a header field to match

against arriving packets, (b) an action (a set of zero or more actions) to perform on the packet

when the header field matches, and (c) a counter to record packet statistics [15]. The header field

of each flow item in the flow table is compared to the header file of the arriving packet, starting

with the first flow entry in the flow table. The packet is transmitted to the controller using the

Packet-in message if no match is detected. The flow table is not examined for local traffic (traffic

to and from the encrypted channel). The most extensively used software-based OpenFlow switch

is OpenvSwitch [5.]

B. Controller

A central controller or numerous physically distributed but conceptually centralised controllers

make up the control plane. The communication protocol between these logically centralised

controllers is defined by the East-West bound interface. It provides an abstract representation of

the application layer. The first OpenFlow controller, NOX [6], was written in C++ and Python.

OpenFlow controllers include POX [7], sometimes known as NOX's younger sibling, Ryu [8],

floodlight [9], and OpenDaylight [10].

Figure 3. OpenFlow based SDN architecture

App

Secure channel

Flow table

App App

controller

OpenFlow switch 2

OpenFlow switch 1

OpenFlow switch 3

OpenFlow Protocol

Secure channel

Flow table

Secure channel

Flow table

host host host host host host

Control path

Data path

Artificial Intelligence and Communication Technologies

541

C. OpenFlow Protocol

Between the controller and the switches, the OpenFlow protocol establishes a secure channel

(TLS/TCP). The controller maintains, configures, and communicates with the switches over this
secure channel. (1) Controller-to-switch messages, which are sent by the controller to configure,
manage, or obtain the state of switches; (2) Asynchronous messages, which are sent to the
controller by switches when the switch state changes, an error occurs, or there is no flow entry

for an incoming packet; (3) Symmetric messages, which are sent voluntarily by either the
controller or the switch. [19]

6 Methodology

6.1. Simulation Tool and Experiment Setup

In this section, we'll go through a quick overview of a simulation tool that's needed to design a

layer 2 OpenFlow-enabled SDN network as well as a traditional network. Researchers have a lot

of freedom when it comes to experimenting with physical testbeds. Many components (e.g.,

OpenFlow switches, controller machine, physical infrastructure) are necessary to establish a

physical testbed for OpenFlow application research. Mininet is a free and open-source network

emulator that allows you to build and run realistic software-based networks on a single

computer.[20]

6.1.1. Mininet

Mininet is a free and open-source network emulator that allows you to build and run realistic

software-based networks on a single computer. Mininet runs numerous switches and hosts

on a single operating system (LINUX) kernel using lightweight virtualization. For deployment,

testing, and performance analysis, the code we write and test on Mininet may easily be moved to

the real network with minimum changes.
Mininet virtual machine installation in a virtualization programme is the simplest way to install

Mininet on a non-Linux operating system. We tested Mininet vm version 2.2.2 on Ubuntu 14.04

LTS, which was running in Oracle vm VirtualBox on a Windows operating system. [12] contains

installation instructions and setup notes. Putty and the Xming server are used to establish an X11

forwarding enabled ssh connection with mininet vm. The Xming server runs on the Windows

operating system, allowing it to execute X11 applications (e.g., gedit, xterm, Wireshark). To

connect to Mininet vm via ssh, you must first obtain the IP address of Mininet vm using the

command-line interface.[14]
$ sudo dhclient eth1
 $ sudo ifconfig eth1

7 Proposed Network Model

In this section, we create an OpenFlow network and a traditional network using python language.

To write python code for network designing, it is required to use one editor. In this paper, gedit

(a graphical text editor) is installed in mininet using command-

$ sudo apt-get install gedit

Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav

542

A. OpenFlow Network:

As depicted in Figure 4, we build an OpenFlow network with 10 OpenvSwitch (s1 to s10), 28

virtual hosts (h1 to h28), and an OpenFlow controller pox. Every host has its own IP address.

Virtual ethernet cable with 1000Mbps capacity connects hosts and switches. The flow table of

each OpenvSwitch in an OpenFlow network is initially empty. All ten switches are controlled by

the remote OpenFlow controller POX (carp branch) [13]. It is necessary to construct a component

class for the controller that enables the hosts to communicate with one another through the use

of learning switch logic.

If a switch gets a packet and the switch has no flow rule for the packet, the packet is delivered to

the controller, according to learning switch logic. The MAC address of the sender and the switch

port where the packet was received are both saved by the Controller. In order to discover the

recipient's MAC address and port, the controller will flood the packet [17]. The controller will

then insert the flow rule for the sender and receiver into the switch's flow table. Learning sw.py,

a component for layer 2 learning switches, is saved in the /pox/ext folder, allowing Open

Switches to operate as a type of layer 2 learning switch. To run pox controller, it is required to

run the following in new xterm window.

 /home/mininet/pox/pox.py log.level –DEBUG learning_sw

Figure 4. Proposed OpenFlow based SDN model

H27

H26

H25

H17

H21

H19

H20

H18

H14
H13

H12

H11

H10 H9

H2

H3

H4

Remote controller (POX)

S1 S2 S3

S4

S5

S6

S7

S8

S9

S10

H1

H5

H6

H7

H8

H15
H16

H22
H23

H24

H28

Artificial Intelligence and Communication Technologies

543

Figure 5. Traditional layer 2 network model

B. Traditional Network:

Figure 5 shows a typical network model in which the layer network is created using Linux Bridge

(a layer 2 virtual device). Bridge-utils must be installed in Mininet in order to use Linux Bridge.

The Linux Bridge is made up of a collection of network ports, a control plane, a forwarding plane,

and a MAC learning database [18]. The following command is used to run the traditional network

or the OpenFlow network:

$ sudo python

8 Result and Analysis

The major goal of this study is to examine and contrast the performance of an OpenFlow network

with a Pox controller to a traditional network. To do so, we run a network connectivity test and

analyse the network's throughput.

PING is a network connectivity test and latency measurement tool. The Ipref utility is used to

generate traffic and measure throughput over both a TCP and a UDP connection. Between source

node h1 and destination node h28, a ping test is conducted. As demonstrated in figs. 6 and 7, the

average rtt (round trip time) for the first ping test in an OpenFlow network is 161ms and 6.03ms

in a traditional network. In an OpenFlow network, latency for the first ping test is important

since the flow table is empty and the switch delivers the packet-in message to the controller.

H27

H26

H25

H17

H21

H19

H20

H18

H14
H13

H12

H11

H10 H9

H2

H3

H4

S1 S2 S3

S4

S5

S6

S7

S8

S9

S10

H1

H5

H6

H7

H8

H15
H16

H22
H23

H24

H28

Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav

544

Figure 6. First ping test in OpenFlow network

Figure 7. First ping test in traditional network

To test network connectivity across nodes, the ping all command is used. To all other Open

Switches in ping all, each Open Switch sends ICMP (internet control message protocol) echo

request messages and waits for responses. The average latency of the OpenFlow network

(when flows are implemented in switches) is equivalent to or better than the old network, as

demonstrated in figures 8 and 9.

Figure 8. Ping test in OpenFlow network

Artificial Intelligence and Communication Technologies

545

Figure 9. Ping test in traditional network

Network minimum Average maximum

Traditional network .137ms .244ms .510ms

OpenFlow Network .105ms .184ms 1.743ms

The Iperf utility is used to analyse bandwidth consumption in networks between source node h1

and destination node h28. TCP server is started at destination host 28 and TCP client is started

at host h1. The snapshot of the result shows the commands that were used at the source and

destination nodes. Data is transmitted via a TCP connection for 10 seconds to analyse bandwidth

utilisation.

Table 1. Round trip time comparison between OpenFlow and traditional

network

Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav

546

Figure 10. Throughput over TCP connection in OpenFlow network

Artificial Intelligence and Communication Technologies

547

Figure 11. Throughput over TCP connection in Traditional network

Table 2 shows a comparison of the bandwidth of an OpenFlow network and a typical network

via a TCP connection. Figures 10 and 11 demonstrate the commands that are used at the

source and destination nodes, respectively.

Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav

548

Table 2. Bandwidth comparison between OpenFlow and traditional network

for TCP connection

Network Data transferred Bandwidth
Traditional network 945MByte 792Mbps

OpenFlow Network 968MByte 808Mbps

In a UDP connection, jitter, packet loss, and out-of-order packet delivery are a few factors

that might reduce the throughput of the network. UDP client is initiated at source node h1

and UDP server is started at destination node h28 for UDP testing. Over a UDP connection,

data is transferred for 10 seconds. Figures 12 and 13 illustrate the results of UDP tests, while

table 3 shows a comparison of networks based on server reports.

Table 3. Comparison between OpenFlow and traditional network for UDP

connection

Network Data transferred
(MB)

Bandwidth
(Mbps)

Jitter
(ms)

Loss (%)

Traditional
network

1.25 1.05 .091
0

OpenFlow
Network

1.25 1.12 .067 0

Figure 12. Throughput over UDP connection in Traditional network

Artificial Intelligence and Communication Technologies

549

Figure 13. Throughput over UDP connection in OpenFlow network

In order to assess the network's performance, ping and iperf were utilised. The ICMP () echo

request message is sent by the ping command to the specified destination IP address. If the target

can be reached, an ICMP echo reply message is sent. Ping testing gives us the rtt. Every second,

the ping command transmits one ICMP request packet. In both networking environments,

Sending a single echo request message from source node h1 to destination node h28 kicks off our

ping test. The first packet in the switch must enter the flow because we used the reactive

technique. As a result, the rtt time in the OpenFlow environment is substantially longer

(161.274ms) than the rtt time in the traditional networking context (6.038ms). By continuously

transmitting 100 ICMP packets in both networking environments, we were able to determine the

network's average latency. As shown in comparison table 1, the latency of the OpenFlow network

is comparable to that of traditional networking.

The iperf utility was used to determine the maximum bandwidth for a TCP connection, as well

as bandwidth, jitter, and packet loss for a UDP connection. Iperf provides a UDP and TCP data

stream to measure the network's throughput. It is necessary to operate h1 in TCP client mode

and h28 in server mode to monitor bandwidth consumption in both networks between source

node h1 and destination node h28. For ten seconds, a TCP data stream is transferred from the

client to the server. Table 2 compares the bandwidth of an OpenFlow and a traditional network

for a TCP connection. We conducted multiple tests and found that OpenFlow's throughput is

comparable to that of a traditional network. We conducted all of our analyses using virtualization

software, thus the network's performance is ultimately determined by the CPU load, which can

fluctuate.

Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav

550

Similarly, a UDP data stream is delivered from the source to the destination for 10 seconds to

assess the performance of the connection. Table 3 shows a comparison of the performance of

UDP connections. Packet loss and jitter are two elements that affect UDP (a connectionless

protocol) network performance. The bandwidth set in the TCLink is not used by UDP. The

bandwidth for a UDP connection is set to 1Mbps by default. The -b option can also be used to set

the bandwidth. When compared to a conventional network, data loss in an OpenFlow network

for UDP connections is higher.

9 Conclusion and Future Scope

 Control and data planes are merged with networking devices that are challenging to maintain

and configure in a standard networking strategy. Software-defined networking removes the

networking equipment's governing mechanism and turns it into a simple forwarding node. The

logically centralised controller is in charge of these nodes. Using the mininet network emulator,

this article compares the performance of a traditional network versus an OpenFlow-enabled

software-defined network. We ran a network connectivity test using the ping command to check

for connectivity as well as evaluate and compare network latency. Based on the findings, it can

be inferred that the round-trip duration of the OpenFlow network for the initial echo request

ICMP message is significantly longer than the traditional network. OpenFlow, on the other hand,

performs similarly to a traditional network when flow rules are put in the switches. In TCP and

UDP connections, the OpenFlow network has similar or better throughput than the standard

network. By deploying an OpenFlow network, the networking system will become

programmable, manageable, scalable, and fast.

References

[1] S. Dong, K. Abbas and R. Jain, "A Survey on Distributed Denial of Service (DDoS) Attacks in SDN and

Cloud Computing Environments," in IEEE Access, vol. 7, pp. 80813-80828, 2019.

[2] Guerber, Christophe, Mickaël Royer, and Nicolas Larrieu. "Machine Learning and Software Defined

Network to secure communications in a swarm of drones." Journal of Information Security and

Applications 61 (2021): 102940.

[3] Hamdan, M., Hassan, E., Abdelaziz, A., Elhigazi, A., Mohammed, B., Khan, S., ... & Marsono, M. N.

(2021). A comprehensive survey of load balancing techniques in software-defined network. Journal of

Network and Computer Applications, 174, 102856.

[4] Isyaku, B., Mohd Zahid, M. S., Bte Kamat, M., Abu Bakar, K., & Ghaleb, F. A. (2020). Software defined

networking flow table management of openflow switches performance and security challenges: A

survey. Future Internet, 12(9), 147.

 [5] Du, Jilong, Peng Han, and Yuchen Xi. "SDN applications and related algorithms in network

architecture." In International Conference on Electronic Information Engineering and Computer

Technology (EIECT 2021), vol. 12087, pp. 100-112. SPIE, 2021.

[6] Torres, Eliseu, et al. "A SDN/OpenFlow framework for dynamic resource allocation based on bandwidth

allocation model." IEEE Latin America Transactions 18.05 (2020): 853-860.

[7] Prabakaran, D., S. Mohammed Nizar, and K. Suresh Kumar. "Software-defined network (SDN)

architecture and security considerations for 5G communications." Design methodologies and tools for 5G

network development and application. IGI Global, 2021. 28-43.

[8] Tadros, Catherine Nayer, Mohamed RM Rizk, and Bassem Mahmoud Mokhtar. "Software defined

network-based management for enhanced 5G network services." IEEE Access 8 (2020): 53997-54008.

[9] Tadros, Catherine Nayer, Mohamed RM Rizk, and Bassem Mahmoud Mokhtar. "Software defined

network-based management for enhanced 5G network services." IEEE Access 8 (2020): 53997-54008.

[10] A. Shirvar and B. Goswami, "Performance Comparison of Software-Defined Network Controllers,"
2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable

Technologies (ICAECT), 2021, pp. 1-13.

Artificial Intelligence and Communication Technologies

551

[11] Gomez-Rodriguez, Jose Ricardo, et al. "A survey of software-defined networks-on-chip: Motivations,

challenges and opportunities." micromachines 12.2 (2021): 183.

[12] Rasool, Zaid Ibrahim, Ridhab Sami Abd Ali, and Musaddak Maher Abdulzahra. "Network management

in software-defined network: A survey." IOP Conference Series: Materials Science and Engineering. Vol.

1094. No. 1. IOP Publishing, 2021.

[13] Isolani, Pedro Heleno, Juliano Araujo Wickboldt, Cristiano Bonato Both, Juergen Rochol, and Lisandro

Zambenedetti Granville. "Interactive monitoring, visualization, and configuration of OpenFlow-based

SDN." In 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 207-

215. IEEE, 2015.

[14] Bhardwaj, Shanu; Panda, S. N.; Muskaan, ; Datta, Priyanka (2020). [IEEE 2020 International

Conference on Emerging Smart Computing and Informatics (ESCI) - Pune, India (2020.3.12-2020.3.14)]

2020 International Conference on Emerging Smart Computing and Informatics (ESCI) - Comparison and

Performance Evaluation of Software-Defined Networking Controllers. , (), 276–281.

[15] Haji, Saad H., et al. "Comparison of software defined networking with traditional networking." Asian

Journal of Research in Computer Science (2021): 1-18.

[16] Noman, H. M., & Jasim, M. N. (2020, July). POX controller and open flow performance evaluation in

software defined networks (SDN) using mininet emulator. In IOP conference series: materials science and
engineering (Vol. 881, No. 1, p. 012102). IOP Publishing.

[17] Islam, M., Islam, N. and Refat, M., 2020. Node to node performance evaluation through RYU SDN

controller. Wireless Personal Communications, 112(1), pp.555-570.

[18] Ali, S., Haque, M.R., Nisar, K., Kannan, R., Khan, T.A. and Ali, B., 2022. Performance analysis for SDN

POX and open daylight controller using network emulator Mininet under DDoS attack. Computational

Intelligence in Software Modeling, 13, p.177.

[19] Bhardwaj, S. and Panda, S.N., 2022. Performance Evaluation Using RYU SDN Controller in Software-

Defined Networking Environment. Wireless Personal Communications, 122(1), pp.701-723.

[20] Askar, Shavan, and Faris Keti. "Performance Evaluation of Different SDN Controllers: A Review."

(2021): 67-80.

Priya Gautam, Surbhi Jha, Chandra Shekhar Yadav

552

